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Two alternative current-induced switching geometries, in which the current flows parallel to the magnet/
nonmagnet interface, are investigated theoretically using the nonequilibrium Keldysh theory. In the first ge-
ometry, the current is perpendicular to the polarizing magnet/nonmagnet interface but parallel to the
nonmagnet/switching magnet interface �CPIP�. In the second geometry, the current is parallel to both polariz-
ing magnet/nonmagnet and nonmagnet/switching magnet interfaces �CIP�. Calculations for a single-orbital
tight-binding model indicate that the spin current flowing parallel to the switching magnet/nonmagnet interface
can be absorbed by a lateral switching magnet as efficiently as in the traditional current-perpendicular-to-plane
�CPP� geometry. The results of the model calculations are shown to be valid also for experimentally relevant
Co/Cu CPIP system described by fully realistic tight-binding bands fitted to an ab initio band structure. It is
shown that almost complete absorption of the incident spin current by a lateral switching magnet occurs when
the lateral dimensions of the switching magnet are of the order of 50–100 interatomic distances, i.e., about 20
nm and its height as small as a few atomic planes. It is also demonstrated that strong spin current absorption
in the CPIP/CIP geometry is not spoiled by the presence of a rough interface between the switching magnet and
nonmagnetic spacer. Polarization achieved using a lateral magnet in the CIP geometry is found to be about 25%
of that in the traditional CPP geometry. The present CPIP calculations of the spin-transfer torque are also
relevant to the so-called pure-spin-current-induced magnetization switching that had been recently observed.
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I. INTRODUCTION

In experiments on current-induced switching of magneti-
zation �see, e.g., Ref. 1�, current passing through a thick
polarizing magnet �PM� becomes spin polarized. The spin-
polarized current �spin current� then flows through a non-
magnetic layer �the spacer layer� and becomes partially or
fully absorbed by a switching magnet �SM�. The absorbed
spin current exerts a spin-transfer torque on the switching
magnet, and this torque can be used to switch the direction of
the magnetization of the switching magnet between the par-
allel �P� and antiparallel �AP� orientations relative to the
magnetization of the polarizing magnet. In this traditional
setup the current is perpendicular to both the PM/spacer and
spacer/SM interfaces. This setup is referred to as current-
perpendicular-to-plane �CPP� geometry and is shown sche-
matically in Fig. 1. The directions of magnetizations of the
polarizing magnet �Mp� and switching magnet �Ms� can be
arbitrary; however, throughout this paper for simplicity we
assume that Mp is in the x direction and Ms is in the z
direction as shown in Fig. 1. The switching process relies on
the scenario in which one of the configurations �P or AP�
becomes unstable; at a critical current, the other configura-
tion is stable and, therefore, available for switching into.
However, in the presence of an external magnetic field stron-
ger than the coercive field of the switching magnet, it is
found experimentally2–5 that, for current greater than a criti-
cal value and with the correct sense, neither the P nor the AP

configuration is stable. The magnetization of the switching
magnet then precesses continually and becomes a source of
microwave generation. It was also proposed6 that microwave
generation can occur even in the absence of an applied field
provided that the spin-transfer torque has both the in-plane
and out-of plane components of appropriate relative sign.
Both the switching and microwave generation scenarios have
potentially very important applications. However, to limit the
current to acceptable values and to minimize the Oersted
fields generated by the current, experiments are performed
on CPP nanopillars with a very small diameter of the order of
100 nm. Such nanopillars are difficult to prepare. Moreover,
to achieve a usable microwave power, large arrays of CPP
nonopillars would have to be manufactured, and this is even
more difficult to achieve. We have, therefore, investigated
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FIG. 1. CPP switching geometry.
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theoretically two alternative geometries, shown in Fig. 2,
which may have interesting applications since they offer
much more flexibility for design of current-induced switch-
ing and microwave generation devices.

In the first geometry shown in Fig. 2�a�, the current is
perpendicular to the PM/spacer interface but parallel to the
spacer/SM interface �CPIP�. In the second geometry shown
in Fig. 2�b� the current is parallel to both the PM/spacer and
spacer/SM interfaces �CIP�. It is clear from Fig. 2 that
switching magnets in the CPIP and CIP geometries are arrays
of either magnetic dots or wires deposited on the surface of a
nonmagnetic substrate. The geometry in which the current-
induced switching is due to a current flowing parallel to the
interfaces was already investigated experimentally by Grol-
lier et al.7 It should also be noted that our CPIP geometry in
which the current flows parallel to the switching magnet/
nonmagnet interface is closely related to that used in the
so-called pure-spin-current-induced magnetization switching
which was recently demonstrated experimentally.8 This is be-
cause, just like in the pure-spin-current switching, no net
charge current flows in the CPIP and CIP geometries through
the switching magnet in the direction perpendicular to its
interface with the spacer. Nevertheless we shall see that a
spin current is absorbed by the switching magnet, and this
gives rise to a nonzero spin-transfer torque. This effect is
sometimes called nonlocal spin-transfer torque �for detailed
discussion of spintronics circuits see Ref. 9�.

While the potential advantages of the CPIP and CIP ge-
ometries are obvious, the crucial question is whether these
alternative geometries are as efficient for switching/
microwave generation as the traditional CPP geometry. To
address this question we have applied the nonequilibrium
Keldysh formalism10–12 to calculate from first principles the
spin-transfer torques in the CPIP and CIP geometries. We
assume in all our calculations that the spin diffusion length is
much longer than the dimensions of our system �spin is con-
served�. We performed calculations of the spin-transfer
torque for perfect CPIP and CIP systems �ballistic limit� and
also in the case of a rough nonmagnet/magnet interface to
check that our results remain valid beyond the ballistic limit.
Rather surprisingly both our single-orbital model calcula-
tions and fully realistic calculations for Co/Cu show that the
spin current flowing parallel to the spacer/SM interface can
be absorbed by the switching magnet as efficiently as in the
traditional CPP geometry. Spin polarization of the current in
the CIP geometry is not as large as in the CPP geometry but
remains sizable, of the same order of magnitude as in the
CPP geometry.

II. THEORETICAL FORMULATION

The Keldysh formalism had been applied previously by
Edwards et al.12 to calculate the spin-transfer torque in the
CPP geometry. An essential requirement for the implementa-
tion of the Keldysh formalism is that a sample with an ap-
plied bias can be cleaved into two noninteracting left �L� and
right �R� parts by passing a cleavage plane between two
neighboring atomic planes. It follows that, initially, neither
charge nor spin current flows in the cleaved system although
the left and right parts of the sample have different chemical
potentials. This is most easily achieved for a tight-binding
�T.-B.� band structure since the T.-B. hopping matrix be-
tween the L and R parts can be switched off. We shall, there-
fore, describe our systems by a tight-binding model in gen-
eral multiorbital with s, p, and d orbitals whose one-electron
parameters are fitted to first-principles band structure, as de-
scribed previously.13 The hopping between the L and R parts
is then turned on adiabatically, and the system evolves to a
steady state. The nonequilibrium Keldysh formalism pro-
vides a prescription for calculating the steady-state charge
and spin currents flowing between the L and R parts of the
connected sample in terms of local one-electron Green’s
functions for the equilibrium cleaved system. In the CPP
geometry, considered by Edwards et al.,12 the sample is
translationally invariant in the direction parallel to all the
interfaces and, therefore, the relevant quantity is the total
spin current flowing between any two neighboring atomic
planes. In particular, the spin-transfer torque acting on the
switching magnet is obtained as the difference between the
spin currents entering and leaving the switching magnet �the
spin current is naturally conserved in the nonmagnetic spacer
and leads�. Edwards et al.12 showed that the local spin cur-
rent is expressed entirely in terms of the one-electron surface
Green’s functions gL�k�� and gR�k�� for the cleaved sample.
Here, k� is the wave vector parallel to the interface. The
Green’s functions at the surfaces of the cleaved system are
obtained from the surface Green’s functions of the nonmag-
netic leads by the method of adlayers.13 In this method one
“grows” the sample by depositing, one by one, all its atomic
planes on the leads and, after each deposition, the surface
Green’s function is updated using Dyson’s equation. The sur-
face Green’s function of semi-infinite leads is obtained by
the method of Umerski.14

We now wish to apply the Keldysh method to the CPIP
and CIP geometries. Referring to Fig. 2, it is clear that the
translational invariance is broken in the z and y directions
but k-space description remains valid in the x direction. We,
therefore, need to work in a representation that is atomiclike
in the z and y directions but Blochlike in the x direction. The
method for modeling CPIP and CIP systems is shown sche-
matically in Fig. 3 for the CPIP geometry. The whole system
is built up from chains of atoms parallel to the z axis which
are repeated periodically in the x direction. We shall label the
position of each chain by n and the position of atoms within
a chain by m. Although we shall frequently refer to chains, in
reality each chain stands for a sheet of atoms since the chains
are repeated periodically in the x direction. The tight-binding
on-site potentials depend on the location of each atom in the
sample, and those for magnetic atoms include an interaction
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FIG. 2. �a� CPIP and �b� CIP switching geometries.
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between electrons in the d orbitals which leads to an ex-
change splitting of the bands in the ferromagnets. The region
which lies outside the sample is modeled by fictitious atoms
with an infinite on-site potential which prevents electrons
from hopping to these vacant sites. All chains can be thus
regarded as having the same length of N=Nld+Nsm�vac� at-
oms, where Nld and Nsm�vac� are, respectively, the numbers of
atoms in the lead and in the switching magnet �vacuum� in
the vertical z direction. It follows that we can create the
whole sample by depositing all its chains one by one on
semi-infinite left and right leads. The surface Green’s func-
tions on the chains located immediately to the left and right
of a cleavage plane, which are required in the calculation of
the spin current, are obtained by updating the Green’s func-
tion from the Dyson equation after each chain deposition.
Since the deposition of chains of atoms takes place in real
space in the z direction the Green’s function is a matrix of
dimension �2 N Norb�� �2 N Norb�, where N is the number of
atoms in a chain and Norb is the number of orbitals. The
factor 2 appears because the Green’s function has two com-
ponents corresponding to two spin projections on the spin
quantization axis.

To calculate the spin and charge currents we assume that
a bias Vb is applied between the left and right leads. Our goal
is to determine the spin and charge currents between any two
neighboring chains of atoms parallel to the z axis, i.e., to the
interface between the left �polarizing� magnet and the lead. If
the cleavage line is first passed to the left of the switching
magnet and then to the right of the magnet, as indicated in
Fig. 3, the spin-transfer torque acting on the switching mag-
net is obtained as the difference between the total spin cur-
rents in these two locations. Following Edwards et al.12 and
assuming the linear-response case of a small bias, it is
straightforward to show that the thermal average of the total
spin current jn−1 flowing between the chains n−1 and n is
given by

�jn−1� =
1

4�
�
km

Re Tr��gLTABgR
†T† − AB +

1

2
�A

+ B�	�

mm

Vb, �1�

where A= �1−gL
†TgR

†T†�−1 and B= �1−gLTgRT†�−1 are defined
in terms of retarded surface Green’s-function matrices
�gL�mm�k and �gR�mm�k for the decoupled equilibrium system.

The subscript L�R� refers to the chains on the left �right� of
the cleavage line. The Green’s functions depend on the wave
vector k labeling Bloch states in the x direction and on the
indices m and m� labeling the atoms in a chain. The matrix T
is the tight-binding interchain hopping matrix. The compo-
nents of � are direct products of the 2�2 Pauli matrices �x,
�y, and �z and �N Norb�� �N Norb� unit matrix. Finally, the
trace in Eq. �1� is taken over all the orbital and spin indices
which are suppressed. Equation �1� yields the charge current
if 1

2� is replaced by a unit matrix multiplied by e /�, where e
is the electronic charge.

It follows from Eq. �1� that the total spin current �charge
current� between the chains n−1,n is the sum of partial cur-
rents flowing between pairs of atoms which are located on
the opposite sides of the cleavage plane and connected by the
T.-B. hopping matrix. By evaluating the individual partial
currents we can, therefore, obtain detailed information about
the local current flow. Equation �1� yields, of course, only
information about current flow in the y direction, which is
perpendicular to the cleavage line. However, by applying
locally Kirchhoff’s law, the current components in the direc-
tion parallel to the cleavage line �z axis� can also be deter-
mined. The current vector describing the flow of charge cur-
rent between any two neighboring atoms in the �y ,z� plane
can be thus reconstructed. While local currents are not con-
served, the total charge current between any two neighboring
chains anywhere in the system is, of course, conserved. The
total spin current between neighboring chains is conserved in
the nonmagnetic parts of the system but can be absorbed in
the magnets, which gives rise to spin-transfer torque. The
application of Eq. �1� to specific CPIP and CIP structures
will be discussed in Sec. III.

III. RESULTS FOR A SINGLE-ORBITAL TIGHT-BINDING
MODEL

To gain some insight, we have first applied the Keldysh
formalism to the CPIP and CIP geometries using a single-
orbital tight-binding model with atoms on a simple cubic
lattice and nearest-neighbor hopping t. In this model the rel-
evant parameters are the on-site potentials V↑ and V↓ which
are measured in the units of 2t=1. The Fermi level is always
set at zero.

We begin with the CPIP geometry illustrated in Fig. 2�a�.
For a meaningful comparison of the CPIP geometry with the
traditional CPP setup, we also need to determine the CPP
spin current for a system which is finite in the z direction.
We, have therefore applied to the CPP geometry the same
real-space method described in Sec. III for the CPIP and CIP
geometries. We choose the total number N of atoms in a
chain to be the same in the CPP and CPIP geometries and
make all the spin currents dimensionless by dividing them by
the total charge current multiplied by � /2e, where e is the
electronic charge. The magnetization of the polarizing mag-
net is assumed to be parallel to the x axis, and that of the
switching magnet is parallel to the z axis. For simplicity, we
choose the polarizing magnet to be semi-infinite in the y
direction. The switching magnet should, of course, be finite
since the torque is calculated by taking the difference be-
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FIG. 3. Schematic model of the CPIP geometry. Two alternative
locations of a cleavage plane are labeled by �1� and �2�.
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tween the spin currents before and after the switching mag-
net. However, it has been demonstrated for the CPP
geometry6 that the dependence of the outgoing spin current
on the switching magnet thickness is almost exactly the same
as the dependence of the spin current on the distance from
the spacer/switching magnet interface in a semi-infinite mag-
net. We checked that this is also true for the CPIP geometry.
We may, therefore, determine the spin-transfer torque using a
semi-infinite switching magnet. The advantage of using a
semi-infinite magnet is a faster convergence of the k-space
sum since small and physically unimportant interference ef-
fects which occur in a ferromagnet of a finite thickness are
eliminated.

Placing a cleavage plane in position �1� in Fig. 3, we first
determine from Eq. �1� the spin current in the nonmagnetic
spacer, i.e., the spin current incident on the switching mag-
net. We then place a cleavage plane between any two neigh-
boring atomic chains in the switching magnet and determine
again from Eq. �1� the local spin current in the magnet. The
spin current jn−1 flowing between the chains n−1 and n can
be then plotted as a function of the position n of the cleavage
plane in the switching magnet. Such plots are shown in Fig.
4 for N=20 and for three different aspect ratios Nsm /N
=1 /20, Nsm /N=10 /20, and Nsm /N=19 /20 corresponding to
the height of the switching magnet in the CPIP geometry of
one atom, ten atoms, and nineteen atoms. The dependence of
the spin current on n in the CPP geometry is also shown in
Fig. 4. The spin current curves in Figs. 4�a� and 4�b� corre-
spond to different tight-binding on-site potentials in the po-
larizing and switching magnets, which are listed in the fig-
ure. The on-site potentials V↑ and V↓ are specified with
respect to spin quantization axis in the z direction. However
the exchange field corresponding to these potentials is ro-
tated in the direction of local magnetization in each magnet.
The potentials in Fig. 4�a� were chosen so that the Fermi
level in the polarizing and switching magnets intersects both
the majority- and minority-spin bands �a weak magnet� and
there is a perfect matching between the bands of the nonmag-
netic spacer and one of the ferromagnet bands. In Fig. 4�b�

both the polarizing and switching magnets are half-metals;
i.e., the minority-spin band is empty. It should be noted that,
in general, the spin current relevant for current-induced
switching has in-plane �x� and out-of-plane �y�
components.12 However, we show in Fig. 4 only the in-plane
component since it is usually most important in switching. It
can be seen from Fig. 4 that both the CPP and CPIP spin
currents decrease as the cleavage plane is moved through the
switching magnet and become almost zero for a switching
magnet of about 50–100 chains wide. The only exception
occurs for the aspect ratio Nsm /N=19 /20 for which the spin
current is virtually nondecaying. This will be explained later
once the physical mechanism governing the spin current ab-
sorption is clarified.

Zero outgoing spin current corresponds to complete ab-
sorption of the spin current by the switching magnet, i.e.,
maximum spin-transfer torque. Figure 4 demonstrates that
almost complete absorption of the spin current is achieved
not only in the CPP geometry but also in the CPIP geometry.

It should be noted that the rate of decay of the CPIP spin
current for a half-metallic magnet �Fig. 4�b�� is comparable
to that for a weak magnet �Fig. 4�a�� but the CPP spin current
decays much faster in a half-metallic ferromagnet.

Since the results in Figs. 4�a� and 4�b� were obtained for
magnets with different band parameters, it is clear that a
complete absorption of the spin current by the switching
magnet in the CPIP geometry is a general phenomenon. It
can also be seen from Fig. 4 that a switching magnet with
height of only one atom has essentially the same absorbing
power as that having height of ten atoms. Generally, we ob-
serve that the distance over which the spin current is ab-
sorbed is shorter for larger aspect ratios Nsm /N.

To understand these rather surprising results, we first re-
call the physical mechanism that governs the absorption of
spin current in the CPP geometry.6,15 For noncolinear mag-
netizations of the polarizing and switching magnets, the spin
of electrons incident on the switching magnet is at an angle
to its exchange field. It follows that the spin must precess in
the exchange field of the switching magnet. The precession
frequency is determined by the components of the wave vec-
tors of majority- and minority-spin electrons parallel to the
current flow �perpendicular to the interfaces�. Given that the
sum of the energies corresponding to perpendicular and par-
allel motion of electrons is constant �equal to the Fermi en-
ergy�, the perpendicular components of the wave vector,
which determine the precession frequency, are functions of
the parallel component k�. Since the total spin current in-
volves the sum over k�, destructive interference of preces-
sions with different frequencies occurs. The conventional
stationary-phase argument15 then shows that only an ex-
tremal frequency of spin current oscillations survives. The
stationary-phase argument also predicts that the amplitude of
spin current oscillations decays as a function of the distance
from the spacer/magnet interface. Such a behavior of the
CPP spin current is clearly seen in Fig. 4�a�. The fast decay
of the CPP spin current in the case of a half-metallic switch-
ing magnet can be explained as follows. The wave function
of an electron with a spin at an angle to the exchange field of
a half-metallic switching magnet is a linear combination of
the wave functions with spin parallel and antiparallel to the
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FIG. 4. Dependence of the spin current on the position n of the
cleavage plane in the switching magnet. The on-site potential pa-
rameters in �a� are V↑=1.5 and V↓=2.5 for the PM, V↑=V↓=1.7 for
the spacer, and V↑=1.7 and V↓=2.4 for the SM. The on-site poten-
tial parameters in �b� are V↑=0.7 and V↓=4 for the PM, V↑=V↓

=0.7 for the spacer, and V↑=0.7 and V↓=4 for the SM. The ex-
change fields corresponding to these potentials are parallel to the
magnetizations of the switching and polarizing magnets, respec-
tively, as depicted in Figs. 1 and 2.
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exchange field. However, since only electrons with one spin
projection on the direction of the exchange field �magnetiza-
tion� exist in a half-metallic magnet the precession amplitude
must decay exponentially. This is the behavior seen for the
CPP spin current in Fig. 4�b�.

It is reasonable to assume that spin precession mechanism
is also responsible for the decay of the spin current in the
CPIP geometry. However, we need to establish that destruc-
tive interference of precessing spins can occur in this geom-
etry and also that electrons traveling parallel to the spacer/
switching magnet interface do penetrate the switching
magnet so that their spin can precess in the local exchange
field. In an inhomogeneous finite sample shown in Fig. 3,
size quantization occurs and electrons thus travel in discrete
size-quantized conductance channels. This effect combined
with the sum over the wave vector k in the x direction pro-
vide in the CPIP geometry the relevant channels for destruc-
tive interference. However, because of the complexity of size
quantization both in the y and z directions, a simple
stationary-phase argument is no longer applicable and an
analytical formula for the spin current decay in the CPIP
geometry is thus not available. The only exception is the case
with an aspect ratio Nsm /N=19 /20 in Fig. 4�a� where size
quantization is so severe that only one conductance channel
is available. Destructive interference then occurs due only to
different k-space channels to which the conventional
stationary-phase argument is applicable. In contrast to the
planar CPP geometry, the k-space sum in the CPIP geometry
is one dimensional and, therefore, the decay of spin current
oscillations is much slower then in the planar CPP geometry.

Although in the general case of a large number of size-
quantized conductance channels we do not have a simple
stationary-phase formula for the spin current in the CPIP
geometry, we can nevertheless make an estimate of the slow-
est decay of the spin current in a lateral switching magnet.
The spin current in Eq. �1� is the trace over the real-space
position in the vertical �z� direction combined with the sum
over the wave vector k labeling Bloch states in the x direc-
tion. The trace in the real space is essentially equivalent to a
sum over discrete size-quantized conductance channels. For
each conductance channel the sum over the wave vector k
can be performed using the conventional stationary-phase
argument �see Ref. 16�. That gives a decay of the spin cur-
rent in each discrete conductance channel of the form
�1 /n, where n is the position of the cleavage plane in the
switching magnet. Since this conventional stationary-phase
argument can be applied to each conductance channel, the
slowest decay of the spin current must be �1 /n. In practice,
destructive interference between different conductance chan-
nels also occurs, and that should lead to a faster decay than
the most pessimistic estimate �1 /n.

It remains to demonstrate that transport electrons pen-
etrate the switching magnet despite the fact that they travel
parallel to the interface. To show that this is the case we have
determined the distribution of the local charge current in the
switching magnet using the method outlined in Sec. II. The
behavior of the charge current is shown in Fig. 5 for k=0
�strictly two-dimensional system� and the aspect ratio
Nsm /N=10 /20. The orientation of each arrow in Fig. 5 rep-
resents the direction of the current flow, and the length of the

arrow gives the magnitude of the local charge current flow-
ing between neighboring atoms. Figure 5 demonstrates that
there is strong penetration of transport electrons into the
switching magnet, and it is the spin precession of these elec-
trons that results in a spin-transfer torque �spin current ab-
sorption� which is as large as in the CPP geometry.

Finally, we need to explain why the decay of the CPIP
spin current in a half-metallic ferromagnet is slower than in
the CPP geometry. In the CPP geometry all electrons have to
pass through the switching magnet and the spin current thus
decays exponentially as discussed above. In the CPIP geom-
etry there are many electrons that penetrate only partially the
switching magnet and are then reflected back to the spacer.
The spin of such electrons with a shallow penetration can
precess in the exchange field of the switching magnet, and
the decay of the spin current is thus not qualitatively differ-
ent from that for a weak magnet �see Figs. 4�a� and 4�b��.

The results shown in Figs. 4 and 5 are for structures with
perfect interfaces, which are illustrated in Fig. 2�a�. Inter-
faces in real structures may well be rough, and it is therefore
necessary to investigate the effect of interfacial roughness on
the absorption of the spin current by the lateral switching
magnet. Since the systems we consider are “grown” in real
space it is straightforward to include in our calculations the
effect of a random intermixing of atoms in the nonmagnetic
spacer and switching magnet. The effect of an intermixing
over two interfacial atomic planes on the absorption of the
spin current is shown in Fig. 6. The intermixing was modeled
by replacing the two interfacial atomic planes by a 50% alloy
of spacer and magnet atoms. The results for a perfect system
are also reproduced in Fig. 6. It can be seen that intermixing
does not spoil the strong absorption of the spin current by a
lateral switching magnet. The other interesting feature is that
the spin current for a perfect CPIP system exhibits oscilla-
tions reminiscent of those that are seen in the CPP geometry.
While oscillations of the spin current in the CPP geometry
can be explained by the stationary-phase theory, a simple
stationary-phase argument is not available for the CPIP ge-
ometry and the precise origin of the oscillations in this ge-
ometry is thus not clear. However, it can be seen in Fig. 6
that CPIP oscillations are removed in a system with rough
interface.

We now investigate the CIP geometry in which the cur-
rent flows parallel not only to the interface between the
spacer and the switching magnet but also to the interface
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FIG. 5. Distribution of the charge current in the switching mag-
net in the CPIP geometry. The on-site potential parameters are
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between the spacer and the polarizing magnet. Since the ab-
sorbing power of the switching magnet in the CIP geometry
must clearly be the same as in the CPIP geometry, the key
question here is the polarizing ability of a polarizing magnet
whose interface with the spacer is parallel to the current flow.
To determine the spin current, we proceed as in the CPIP
geometry �Fig. 3�. We place a cleavage plane between any
two neighboring atomic chains in the switching magnet and
determine from Eq. �1� the local spin current as a function of
the position n of the cleavage plane in the switching magnet.
The continuity of the spin current guarantees that the value
of the spin current at the spacer/switching magnet interface is
equal to the spin current in the spacer. It follows that the
values of the spin current incident on and leaving the switch-
ing magnet can both be determined from the profile of the
spin current in the switching magnet. This is shown in Fig. 7
for the situation when the polarizing magnet is a half-metal
�the minority-spin band is empty� but the Fermi level in the
switching magnet intersects both the majority- and minority-
spin bands. There are two interesting features seen in Fig. 7.
First of all we note that in the CPP geometry only majority-
spin carriers can pass through a half-metallic polarizing mag-
net and, therefore, the spin polarization of the current inci-
dent on the switching magnet is 100% and in the direction of
the spin of the majority-spin carriers. On the other hand, the
spin polarization in the CIP geometry is much smaller, only
about 25%. The second interesting feature is that the spin
polarization of the current in the CIP geometry has a sign
opposite to that in the CPP geometry. This can be most easily
understood in our special case of a half-metallic polarizing
magnet whose majority-spin band matches exactly the bands
of either spin in the nonmagnetic spacer. Minority-spin car-
riers, which cannot penetrate the polarizing magnet, travel as
if in a perfect slab without being scattered from the region in
which the polarizing magnet is located. On the other hand,
majority-spin carriers which can easily penetrate the polariz-

ing magnet region are strongly scattered by the geometrical
inhomogeneity of that region, which strongly reduces but
does not suppress completely their current flow. We thus do
not expect the spin polarization to be complete. Moreover,
the current of the minority-spin carriers is larger than that of
the majority-spin carriers and the sign of the spin current
polarization is thus reversed.

IV. RESULTS FOR Co/Cu LATERAL CPIP SYSTEM

Our model calculations for a single-orbital tight-binding
band indicate that the absorption of the spin current by a
lateral magnet in the CPIP �CIP� geometry is as efficient as
in the standard CPP geometry. To confirm that these results
remain valid for a fully realistic system, we have made cal-
culations of the spin current profile in a cobalt switching
magnet whose interface with a nonmagnetic copper spacer is
parallel to the current flow �CPIP geometry illustrated in Fig.
2�a��. We used in these calculations a semi-infinite fcc Co
sheet of height 4 and 8 atomic planes as a polarizing magnet.
The switching magnet was a sheet of Co of height 4 �8�
atomic planes deposited on a Cu lead whose height was also
4 �8� atomic planes. The crystal orientation of the Co and Cu
sheets was �001�. Both Co and Cu sheets were described by
a fully realistic multiorbital tight-binding model with tight-
binding parameters fitted to the results of first-principles
band-structure calculations �see Ref. 13�. The magnetization
of the polarizing Co magnet was taken to be in the x direc-
tion and that of the switching Co magnet was in the z direc-
tion. As in our one-band model calculations, the Co/Cu CPIP
system was grown in real space and the spin current was
evaluated without any approximations from the Keldysh for-
mula �1�. It should be noted that for a system with 8+8
atomic sheets, all the matrices in Eq. �1� have size �36
�16�� �36�16�, which makes the evaluation of the spin
current computationally very demanding—hence our restric-
tion to the maximum size of 8+8 atomic sheets.
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The dependence of the CPIP in-plane spin current on the
position n of the cleavage plane in the Co switching magnet
for the 4+4 Co/Cu system is shown in Fig. 8�a�. For com-
parison, the CPP spin current is also shown in Fig. 8�a� �con-
tinuous line�. In the CPP geometry, the Co polarizing mag-
net, the Cu spacer, and the Co switching magnet were all
sheets of the same height as the lead in the CPIP geometry. It
can be seen from Fig. 8�a� that in the case of the 4+4 CPIP
system the absorption of the spin current is as fast as in the
conventional CPP geometry. The long-period oscillations of
the spin current in the CPIP and CPP geometry are very
similar, but we can see in the CPP geometry an additional
short oscillation period which is not present in the CPIP
geometry. The absorption of the spin current for the 8+8
CPIP system, which is shown in Fig. 8�b�, is slower, but
nevertheless more than two-thirds of the spin current are ab-
sorbed over 50 atomic planes and virtually all the spin cur-
rent is absorbed over some 200 atomic planes. The slower
absorption of the spin current for the 8+8 CPIP Co/Cu sys-
tem is in qualitative agreement with our results for the 10
+10 CPIP single-orbital model �see Fig. 4�a��.

We conclude that the results for realistic Co/Cu systems
confirm the viability of a setup with a lateral switching mag-
net, i.e., the CPIP geometry in which the current flows par-
allel to the spacer/switching magnet interface.

V. CONCLUSIONS

Using the nonequilibrium Keldysh theory, we have inves-
tigated theoretically two geometries for current-induced
switching of magnetization in which the current flows paral-
lel to the magnet/nonmagnet interface. In the first geometry
the current is perpendicular to the polarizing magnet/spacer
interface but parallel to the spacer/switching magnet inter-
face �CPIP�. In the second geometry the current is parallel to
both polarizing magnet/spacer and spacer/switching magnet
interfaces �CIP�. Our calculations for a single-orbital tight-

binding model indicate that the spin current flowing parallel
to the switching magnet/spacer interface can be absorbed by
a lateral switching magnet as efficiently as in the traditional
CPP geometry. We have confirmed that the results of such
model calculations in the CPIP geometry are also valid for
experimentally relevant Co/Cu CPIP system described by
fully realistic tight-binding bands fitted to an ab initio band
structure. Our results show that almost complete absorption
of the incident spin current by a lateral Co switching magnet
�magnetic dot� occurs when the lateral dimensions of the
switching magnet are of the order of 50–200 interatomic
distances, i.e., about 10–40 nm. The numerical results are
supported by an analytical stationary-phase argument which
indicates that the decay of the spin current in a lateral switch-
ing magnet should not be slower than 1 /n, where n is the
lateral size of the magnet measured in the units of inter-
atomic spacing. Hence about 90% spin current absorption
should be achieved by a magnet of a lateral size of about 20
nm. Moreover, to achieve full absorption of the spin current
�maximum spin-transfer torque�, the height of a lateral
switching magnet can be as small as a few atomic planes. It
follows that the total volume of the switching magnet in the
CPIP �CIP� geometry can be even smaller than that in the
traditional CPP geometry using magnetic nanopillars. This
indicates that current-induced switching and microwave gen-
eration in the CPIP geometry should be feasible. We have
also demonstrated that strong spin current absorption in the
CPIP/CIP geometry is not spoilt by the presence of a rough
interface between the switching magnet and nonmagnetic
spacer.

We find that the polarization achieved using a lateral mag-
net in the CIP geometry is only about 25% of that in the
traditional CPP geometry. The CPIP geometry is thus prefer-
able but CIP could be still usable with a stronger current.

Finally, we wish to make contact with the recent
experiment8 in which the so-called pure-spin-current-induced
magnetization switching had been demonstrated. In the ex-
perimental setup of Ref. 8 the current was spin polarized by
passing it through a magnet �current-perpendicular-to-
magnet/spacer interface� but the resultant spin current was
absorbed by a lateral magnet �current parallel to magnet/
spacer interface�. The experimental setup of Ref. 8 is thus
topologically equivalent to our CPIP geometry. In fact, to
make our CPIP geometry more similar to the setup of Ref. 8
we could include in Fig. 3 an additional vertical nonmagnetic
lead inserted between the switching magnet and the lateral
spacer. We have checked that in the ballistic limit the spin
current absorption is not affected by the presence of such an
additional vertical lead. Hence we conclude that our calcula-
tions in the CPIP geometry are also relevant to the experi-
mental setup of Ref. 8.
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